Tevatron Connection, August 9, 2004

Latest results EW and Top results from

Ia Iashvili University of California, Riverside

Outline

- $Z \rightarrow \tau^+ \tau^-$ cross section
- WW cross section
- Zy cross section
- tt cross section in ℓ+jets channel with b-tagging
- tt cross section in eµ+jets channel with b-tagging
- Search for single top quark production
- Top mass measurement in ℓ+jets channel
- W helicity measurement in top quark decays

$Z \rightarrow \tau^+ \tau^-$ cross-section measurement

- Serves as benchmark process to test τ identification
- Foundation for many analysis involving taus.
- Select events with one $\tau \rightarrow \mu \nu \nu$, other τ decaying hadronically. Require opposite charges.
- Reconstruct 3 types of hadronic τ :
 - type 1 ($\pi \nu$ -like) calorimeter cluster with single matched track. No EM subcluster
 - \rightarrow type 2 (ρν-like) calorimeter cluster with single matched track. With ≥1EM subcluster
 - type 3 (3-prong) \geq 2 tracks matched with calorimeter cluster, consistent with τ mass
- Construct Neural Network separately for all 3 types of hadronic τ. Most input variables are ratios of energies to minimize dependence on E_τ.
- Some selection cuts:
 - Isolated muon with $P_T > 12 \text{ GeV}$
 - Highest P_{τ} track of hadronic $\tau > 3.5 \text{ GeV}$;
 - → Hadronic τ E_T>10 GeV (> 5 GeV) for type1&3 (type 2)
 - Sum of track $P_T > 7 \text{GeV} (> 5 \text{ GeV}) \text{ for type1&3 (type 2)}$
 - $|d\phi| > 2.5$
 - NN> 0.8
- 1946 events selected with ~ 55% of background from bb, W+jets, and $Z\rightarrow\mu\mu$, all estimated from data

$Z \rightarrow \tau^+ \tau^-$ cross-section measurement

Efficincies for 3 types of τ
 (including τ decay branchings)

Type 1: 0.35%

- Type 2: 1.61%

- Type 3: 0.79%

$$\sigma(Z/\gamma* \rightarrow \tau\tau) = 256 \pm 16(\text{stat}) \pm 17(\text{sys}) \pm 16(\text{lumi}) \text{ pb}$$

- Good agreement with the prediction.
- Systematics due trigger. data/MC correction factors, energy scale, NN, background estimate

Measurement of the WW cross section

Important measurement because

- WW production is major background for searches (Higgs, SUSY)
- It provides test of trilinear couplings (WWZ, WW γ)

- Theoretical prediction (Campbell, Ellis)
 - \rightarrow σ(WW) =13.5 pb @ 1.96 TeV
- Main backgrounds
 - Z/ γ , tt, WZ, ZZ, W+jet/ γ , multijets
- Data up to March 2004
 - → Integrated luminosity 224-252 pb⁻¹

Selection criteria

- → Two high p_T leptons of opposite charge, large missing E_T
- Veto on Z and jet events, suppress conversions

Measurement of the WW cross section

• Signal, background and data after final selection

Process	ee	$e\mu$	$\mu\mu$
WW signal	3.26 ± 0.05	10.8 ± 0.1	2.01 ± 0.05
$Z/\gamma^* \to ee$	0.20 ± 0.06	: <u>2</u>	.3 <u>v</u> 25
$Z/\gamma^* o \mu \mu$	1	0.28 ± 0.09	1.6 ± 0.4
$Z/\gamma^* o au au$	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
$t ar{t}$	0.18 ± 0.02	0.34 ± 0.03	0.09 ± 0.01
WZ	0.33 ± 0.17	0.38 ± 0.02	0.15 ± 0.08
ZZ	0.19 ± 0.06	0.02 ± 0.02	0.10 ± 0.04
$W+jet/\gamma$	1.25 ± 0.07	2.72 ± 0.07	0.01 ± 0.01
QCD	0.0 ± 0.0	0.07 ± 0.07	0.0 ± 0.0
Background sum	2.30 ± 0.21	3.81 ± 0.17	1.94 ± 0.41
Data	6	15	4

Combination of all three channels yields WW production cross section of

$$\sigma(WW) = 1.38^{+4.2}_{-3.8}(stat)^{+1.0}_{-0.8}(sys) \pm 0.9(limi)pb$$

Background probability

$$1 - CL_B = 2.3 \times 10^{-7}$$

Signal significance

Zy production cross-section

- Tool to probe trilinear gauge boson couplings, $\mathbb{Z}\mathbb{Z}\gamma$ and $\mathbb{Z}\gamma\gamma$.
- Requires efficient photon identification
- **Event selection**
 - Pair of high P_T isolated lectrons or muons
 - $M(\ell^+\ell^-)>30 \text{ GeV}$
 - Isolated photon with $P_T > 8 \text{GeV}$ and with $dR(\gamma, \ell) > 0.7$
 - Photon ID efficiecy $\approx 82\pm2$ %
- Signal events generated using MC by U. Baur.
- Main background is Z+jets poduction. Estimated from data.

60

80

100

 $E_{\tau}(\gamma)$, GeV

Events / 5 GeV

10

20

Zγ production cross-section

 $\sigma((Z\gamma)^* \to \mu\mu/ee, M_{\ell\ell} > 30 \text{ GeV}, P_T(\gamma) > 8 \text{ GeV}) = 3.99 \pm 0.8(\text{stat}) \pm 0.25(\text{sys}) \pm 0.26(\text{lumi}) \text{ pb}$

tt cross-section in the ℓ+jets channel using b-tagging

- Lepton + jets signature comes from $tt \rightarrow W^+bW^-b \rightarrow \ell\nu b + qq'b$ decays. Simmilar signatures arise from W+jets and QCD multijet events.
- Basic kinematic cuts:
 - Isolated electron or muon with $P_T > 20 \text{ GeV}$
 - Missing $E_{_{\rm T}} > 20(17)$ GeV for e+jets (μ +jets); not alligned with lepton
 - At least 3 jets with $P_{_{\rm T}} > 15$ GeV in $|\eta| < 2.5$
- b-tagging requirement
 - At least one b-tagged jet
 - Treat separately samples with exactly 1 b-tag and \geq 2-b-tag jets
- Tagging algorithms
 - Two independent analysis applying different tagging techiques

Counting Signed Impact Parameter (CSIP)

Jet is tagged if $N_{tr}(\sigma_{IP}>2) > 3 \text{ OR } N_{tr}(\sigma_{IP}>3) > 2$

Secondary Vertex Tagging (SVT)

Reconstructs displaced vertices. Cuts on vertex decay length significance

tt cross-section in the ℓ+jets channel using b-tagging

- Jet b-tagging efficiency in data:
 - For b-jets tagging efficiency is obtained using jets containing muon
 - For light-quark/gluon jets tagging efficiency is determined from jets with negative decay length
- Obtained tagging parametrizations $E_{tag}(E_{T},\eta)$ are applied to tt MC events to estimate overall signal tagging efficiency
 - $\epsilon_{\text{1-tag}}(tt) \approx 45 \%$
 - $\varepsilon_{\geq 2 \text{ tag}}(\mathbf{t}\mathbf{t}) \approx 12 \%$
- The average b-tagging(≥ 1 tag) probability for QCD multijets events is
 - $\epsilon_{3\text{-jet events}}(tt) \approx 4 \%$
 - $\epsilon_{3\text{-jet events}}(tt) \approx 5 \%$
- Backgrounds
 - QCD background obtained entirely from data.
 - Relative composition of W+jets background is taken from ALPGEN MC. This together with b-tagging efficiency parametrizations gives overall W+jets tagging efficiency. Number of untagged W+jets events comes from data.

tt cross-section in the ℓ+jets channel using b-tagging

• Number of events

	W+1jet	W+2jets	W+3jets	W+≥4jets
preselected	6321	2348	586	174
CSIP: tagged	103	87	43	34
double tagged		6	4	5
SVT: tagged	64	69	34	33
double tagged		4	5	3

e+jets: 168.8 pb^{-1}

	W+1jet	W+2jets	W+3jets	W+≥4jets
preselected	5130	2077	511	119
CSIP: tagged	80	70	38	18
double tagged		5	3	3
SVT: tagged	55	59	42	16
double tagged		4	3	3

 μ +jets: 158.4 pb^{-1}

• Combine (=1jet, \geq 2jets) x (1b-tag, \geq 2 b-tags) x (e+jets, μ +jets) channels

CSIP
$$\sigma(tt) = 7.18^{+1.28}_{-1.19}(stat)^{+1.93}_{-1.38}(sys) \pm 0.47(lumi)pb$$

SVT $\sigma(tt) = 8.24^{+1.34}_{-1.25}(stat)^{+1.89}_{-1.63}(sys) \pm 0.54(lumi)pb$

t t cross-section in the eµ+jets channel using b-tagging

- e μ + jets is the cleanst tt channel.

 Applying additional b-tagging requirement makes it essentially background free.
- Event selection
 - Isolated electron and muon with $P_{T} > 15 \text{ GeV}$
 - Missing $E_T > 25 \text{ GeV}$
 - At least one jet with $P_{_{\rm T}} > 15 \text{ GeV}$
 - At least one jet tagged by Seconday Vertex Tagger
- Signal b-tagging efficiency estimated using per-jet b-tagging efficiency parametrizations obtained in data
 - $\varepsilon(tt) = 38\%$ for $\varepsilon \mu + 1$ jet events
 - * $\varepsilon(tt) = 59\%$ for $e \mu + \ge 2$ jets events
- Main backgrounds
 - **Physics background:** $\mathbf{Z}(\to \tau\tau)$ +jet(s)
 - Instrumental background: QCD multijet, W+jets

t t cross-section in the eµ+jets channel using b-tagging

• Cross-section obtained by combining =1jet and \geq 2jets bins

$$\sigma(tt) = 11.1^{+5.8}_{-4.3}(stat) \pm 1.4(sys) \pm 0.7(lumi)pb$$

Search for single top quark production

• Two main production mechasnims at the Tevatron

s-channel

$$\sigma^{\text{NLO}} = 0.88 \text{pb}$$

- → Measure CKM element V_{tb}
- Observe top polarization

- Signature: high P_T lepton, large missing E_T , ≥ 2 jets (≥ 1 b-jet)
- Selection:
 - Isolated e or μ with $P_T > 15$ GeV
 - $\sim 1 < N_{\text{jets}} < 5$
 - Leading jet with $P_T>25$ GeV in $|\eta|<2.5$; Other jets with $P_T>15$ GeV in $|\eta|<3.4$

 - H_T(ME_T+lepton+jet1+jet2)> 150 GeV
 - At least one jet tagged as a b-jet by lifetime tagger OR by soft muon tagger (SLT)
 - → Two parallel analysis using two lifetime taggers:
 - SVT explicitly reconstructs secondary vertices
 - JLIP computes probability (based on σ_{IP}) that track in jet come from the interaction point

Search for single top quark production

- Signal generated with CompHep+Pythia
- Main backgrounds: W+jets and QCD estimated from data; tt estimated from MC; $Z(\rightarrow \mu \mu)$ + jets estimated from data+MC
- Luminosities: 145-169 pb⁻¹ for electron channel, 158 pb⁻¹ for muon channel

Electron+muon yield	SLT	SVT	JLIP
Signals			
s-channel	1.3 ± 0.3	3.1 ± 0.8	3.2 ± 0.7
t-channel	1.7 ± 0.4	5.1±1.3	5.3 ± 1.3
Backgrounds			
$t\bar{t}$	17.8 ± 4.1	43.2 ± 10.4	43.7 ± 10.9
W/Z+jets+fake-l	58.4 ± 11.5	94.2±17.7	122.2±23.9
Sum of backgrounds	76±11	137±21	166±26
Observed	97	138	148

e+ µ,	Observed/Expected Limit at 95% CL (pb)		
SLT + SVT	Bayesian	Modified Frequentist	
s- channel	19/16	17/16	
t- channel	25/23	25/22	
s- and t- channel	23/20	23/19	

Top mass in ℓ+jets channel: Template method

- $tt \rightarrow W^+bW^-b \rightarrow \ell \nu b + qq'b$ system is kinematically over-constraint
 - → Use constraint fit to reconstruct top mass m_t for all 12 possible jet-lepton assignements.
 - Take m_t from permutation with lowest fit χ^2
- Build low bias discriminant D_{LB} using topological variables . Apply $D_{LB} > 0.4$.
- Fit observed m_t distribution to the templates of signal, W+jets (MC) and QCD (data) events
- Use binned likelihood fit. Constrain sample purity to the expectation through Poissonian probability term
- Composition of the sample before $D_{LB} > 0.4$ cut:

$L_{int} \approx 160 pb^{-1}$	e+jets	μ +jets
no.of events selected in data	101	90
estimated sample composition	n:	
$t\bar{t}$	30.9	29.9
W + jets	65.7	53.4
multijets	4.4	6.9

The method performance

Top mass in ℓ+jets channel: Template method

$$m_{top} = 170.0 \pm 6.5 (stat)^{+10.2}_{-6.5} (sys) GeV$$

- Measured mass changes from 170.0 to 172.1 when removing purity constraint constraint
- Systematic uncertainty dominated by Jet Energy Scale error. Currently using conservative estimate

Top mass in \(\ell\)+jets channel: Ideogram Method

- Event-by-event likelihood taking into account all 24 jet+neutrino solutions from kinematic fit and probability that the event is background
- Event selection as Template method, without D>0.4
- Let overall signal fraction P_{samp} float freely in fit for each top mass m_{t}

$$\mathcal{L}_{\mathrm{evt}}(m_{\mathrm{t}}, P_{\mathrm{samp}}) =$$

$$P_{\text{evt}} \cdot \left[\int_{100}^{300} \sum_{i=1}^{24} w_i \cdot \mathbf{G}(m_i, m', \sigma_i) \cdot \mathbf{BW}(m', m_{\text{t}}) dm' \right] + (1 - P_{\text{evt}}) \cdot \sum_{i=1}^{24} w_i \cdot \mathbf{BG}(m_i)$$

$$w_i = \exp(-\frac{1}{2}\chi_i^2)$$

Uses all possible jet/neutrino combinations, best permutation has most weight

BG shape from MC

$$P_{\text{evt}} = \left(\frac{S}{S+B}\right)_{\text{evt}} = \frac{(S/B)_{\text{evt}}}{(S/B)_{\text{evt}} + 1} = \frac{(S/B)_{\text{samp}} \cdot (S/B)_D}{(S/B)_{\text{samp}} \cdot (S/B)_D + 1}$$

Weights each event by the topological discriminant so that the events that are most likely top count the most

Top mass in \(\ell\)+jets channel: Ideogram Method

generated mass - 175 GeV

Top mass in \(\ext{\end} + \text{jets channel: Ideogram Method} \)

$$m_{top} = 177.5 \pm 5.8 (stat) \pm 7.2 (sys) pb$$

 Measured mass changes from 177.5 to 170.0 when applying purity constraint

W helicity measurement in top quark decays

- In the Standard Model, W helicity depends only on top and W masses
 - → Predicted to be 70% longitudinal, 30% left-handed, and 0% right-handed
 - **→** We measure right-handed fraction f⁺
- Nonzero value would indicate
 - → New physics at the tWb vertex
 - Source other than ttbar contributing to signal
- W helicity determines the distribution of $\cos \theta^*$
 - Angle between lepton and top directions in W rest frame
- Data up to November 2003
 - Integrated luminosity ~158 pb⁻¹

- → high- p_T muon, ≥ 4 jets, missing E_T
- → Two parallel analyses differing in further selection to reduce background
- One uses purely topological information (topological analysis); other uses topological information, plus requires at least 1 jet tagged by SVT (b-tag analysis)

W helicity measurement in top quark decays

- Number of events after selection in 'topological analysis':
 - 31 candidates observed in data
 - Expected yield for signal and backgournd: ~11 and ~20 events, respectively
- Number of events after selection in 'b-tag analysis':
 - 12 candidates observed in data
 - Expected yield for signal and backgournd: ~9.6 and ~2.7 events, respectively
- Ideal distributions in $\cos \theta^*$ modified by event combinatorics, detector resolution, and selection:

- Binned maximum likelihood fit used to extract f⁺. inputs are:
 - $-\cos\theta^*$ distribution in data
 - $-\cos\theta^*$ distribution in sig and bkgd MC
 - Expected bkgd contribution
- MC tests confirm that fit result and errors are unbiased

W helicity measurement in top quark decays

Result of the topological analysis:

Result of the b-tag analysis:

Systematics include jet energy scale, top quark mass, signal and background MC models

Summary

- Many new exciting results from Dzero.
 I could only cover some of them .
- Many more to come

Backup slides

Top mass in ℓ+jets channel: Summary

$Z \rightarrow \mu^{+}\mu^{-}$ cross-section measurement

- Provides indirect measurement of W width when combined with $\sigma(W)$.
- Servse as banchmark process to test detector performance
- Standard tool to measure lepton identification, isolation and tracking efficiencies.
- Event selection:
 - Two oppositly charged isolated muons with $P_T > 15$ GeV in $|\eta| < 2$
 - $M_{\mu\mu} > 30 \text{ GeV}$

• Small background (~1.3%), mostly determined from data:

$$Z \rightarrow \tau^+ \tau^- (0.5\%)$$

- **Cosmic muons (0.1%)**
- W $\rightarrow \mu\nu$ +jets (0.2%)
- Signal efficincy 22-32% (different run periods)

$$\sigma((Z/\gamma)^* \to \mu\mu, M_{(Z/\gamma)^*} > 30 \text{ GeV}) = 329.2 \pm 3.4 \text{(stat)} \pm 7.8 \text{(sys)} \pm 21.4 \text{(lumi) pb}$$

• Correct for pure photon and $(\mathbb{Z}/\gamma)^*$ interference – factor of 0.885 ± 0.013 obtained from MCatNLO

$$\sigma(Z \rightarrow \mu\mu) = 291.3 \pm 3.0 \text{(stat)} \pm 6.9 \text{(sys)} \pm 18.9 \text{(lumi) pb}$$

$WZ \rightarrow \ell \ell \ell$ production

- Small cross-section, σ =3.7 pb
- But very dinstictive signature
- Test of SM via triple-gauge boson coupling
- Event selection:
 - Three isolated leptons ($\ell = e, \mu$) with $P_T > 15 \text{ GeV}$
 - Missing $E_T > 20 \text{ GeV}$
 - $dR(\ell,\ell) > 0.2$
 - Z mass window cut
 - $-M_{\rm T}>50~{\rm GeV}$
- Main background is Z+jets poduction.
 Estimated from data.
- Analyzed dataset: L_{int}=138-171 pb⁻¹
- Expected total number of events: 1.02 signal and 0.38 backgroud
- 1 μμμ candidate observed in data
- Cross-section limit:

$$\sigma(WZ) < 15.1 \text{ pb } @ 95\% \text{ C.L.}$$

Top mass in \(\ext{\end} + \text{jets channel: Ideogram Method} \)

Systematic uncertainty again dominated by Jet Energy Scale error